

HT32F52231/HT32F52241 HT32F52331/HT32F52341 产品规格书

带 ARM® CortexTM-M0+ 内核以及 1 MSPS ADC、USART、UART、SPI、I²C、MCTM、GPTM、

SCTM、BFTM、SCI、CRC、RTC、WDT 和 USB 2.0 FS 高达 64KB Flash 和 8KB SRAM 的 Holtek 32-Bit 单片机

版本: V1.30 日期: 2016-10-14

www.holtek.com

目录

1	简介	.6
2	特性	.7
	内核	. 7
	片上存储器	. 7
	Flash 存储器控制器 – FMC	. 7
	复位控制单元 – RSTCU	. 7
	时钟控制单元 – CKCU	. 8
	电源管理 – PWRCU	. 8
	外部中断 / 事件控制器 – EXTI	. 8
	模数转换器 – ADC	. 8
	输入 / 输出端口 – GPIO	. 9
	马达控制定时器 – MCTM	. 9
	PWM 产生和捕捉定时器 – GPTM	. 9
	单通道产生与捕捉定时器 – SCTM	10
	基本功能定时器 – BFTM	10
	看门狗定时器 – WDT	10
	实时时钟 – RTC	10
	内部集成电路 – I ² C	11
	串行外设接口 – SPI	
	通用同步异步收发器 – USART	
	通用异步收发器 – UART	
	智能卡接口 – SCI (仅 HT32F52331/HT32F52341)	
	循环冗余校验 – CRC	
	通用串行总线设备控制器 – USB (仅 HT32F52331/HT32F52341)	
	调试支持	
	封装和工作温度	13
3	概述	14
	单片机信息	14
	方框图	15
	存储器映射	16
	时钟结构	19
4	引脚图	20
5	电气特性	34
	极限参数	
	建议直流工作条件	

片上 LDO 稳压器特性	3/1
功耗	
复位和电源监控特性	
外部时钟特性	
内部时钟特性	
PLL 特性	
存储器特性	
I/O 端口特性	40
A/D 转换器特性	41
SCTM/GPTM/MCTM 特性	42
I ² C 特性	42
SPI 特性	43
USB 特性	45
6 封装信息	47
24-pin SSOP (150mil) 外形尺寸	
28-pin SSOP (150mil) 外形尺寸	49
SAW Type 33-pin (4mm×4mm) QFN 外形尺寸	50
48-pin LQFP (7mm×7mm) 外形尺寸	

2016-10-14

表列表

表 1. 特性及外设列表	14
表 2. 寄存器映射	17
表 3. HT32F52231/52241 引脚分配 – 24/28-pin SSOP, 33-pin QFN, 48-pin LQFP 封装	26
表 4. HT32F52331/52341 引脚分配 – 33-pin QFN, 48-pin LQFP 封装	28
表 5. HT32F52231/52241 引脚描述	30
表 6. HT32F52331/52341 引脚描述	32
表 7. 极限参数	34
表 8. 建议直流工作条件	34
表 9. LDO 特性	34
表 10. HT32F52231/52241 功耗特性	35
表 11. HT32F52331/52341 功耗特性	36
表 12. V _{DD} 电源复位特性	37
表 13. LVD/BOD 特性	37
表 14. 外部高速时钟 (HSE) 特性	38
表 15. 外部低速时钟 (LSE) 特性	38
表 16. 内部高速时钟 (HSI) 特性	39
表 17. 内部低速时钟 (LSI) 特性	39
表 18. PLL 特性	39
表 19. Flash 存储器特性	39
表 20. I/O 端口特性	40
表 21. A/D 转换器特性	41
表 22. SCTM/GPTM/MCTM 特性	42
表 23. I ² C 特性	42
表 24. SPI 特性	43
表 25. USB 直流电气特性	45
表 26. USB 交流电气特性	46

图列表

图 1. 方框图	
图 2. 存储器映射	
图 3. 时钟结构图	
图 4. HT32F52231/52241 24-pin SSOP 引脚图	20
图 5. HT32F52231/52241 28-pin SSOP 引脚图	21
图 6. HT32F52231/52241 33-pin QFN 引脚图	22
图 7. HT32F52231/52241 48-pin LQFP 引脚图	23
图 8. HT32F52331/52341 33-pin QFN 引脚图	
图 9. HT32F52331/52341 48-pin LQFP 引脚图	
图 10. A/D 转换器采样网络模板	41
图 11. I ² C 时序图	43
图 12. SPI 时序图 – SPI 主机模式	44
图 13. SPI 时序图 – SPI 从机模式(CPHA=1)	45
图 14. USB 信号上升时间、下降时间和交叉点电压 (V _{CRS}) 定义	46

1 简介

Holtek HT32F522x1/523x1 系列是基于 ARM® Cortex™-M0+ 处理器内核的 32-bit 高性能低功耗单片机。Cortex™-M0+ 是把嵌套向量中断控制器 (NVIC)、系统节拍定时器 (SysTick Timer) 和先进的调试支持紧紧结合在一起的新一代处理器内核。

该系列单片机可借助 Flash 加速器工作在高达 40MHz (HT32F52231/HT32F52241) 或 48MHz (HT32F52331/HT32F52341) 的频率下,以获得最大的效率。它提供 64KB 的嵌入式 Flash 存储器用于程序代码 / 数据存储,8KB 的嵌入式 SRAM 存储器用作系统操作和应用程序使用。此系列单片机具有多种外设,如 A/D 转换器、I²C、USART、UART、SPI、MCTM、GPTM、SCTM、CRC-16/32、RTC、WDT、SCI、USB2.0 FS、SW-DP (串行线调试端口)等。多种省电模式的灵活切换可实现唤醒延迟和功耗间最大优化,此特性在低功耗应用方面尤为重要。

以上这些特性使该系列单片机可以广泛地适用于各种应用,如白色家电应用控制,电源监控,报警系统,消费类产品,手持式设备,数据记录应用,马达控制等。

Rev. 1.30 6 of 52 2016-10-14

2 特性

内核

- 32-bit ARM® CortexTM-M0+ 处理器内核
- 高达 40MHz (HT32F52231/HT32F52241)/48MHz (HT32F52331/HT32F52341) 工作频率
- 0.93 DMIPS/MHz (Dhrystone v2.1)
- 单周期乘法
- 集成嵌套向量中断控制器 (NVIC)
- 24-bit SysTick 定时器

Cortex[™]-M0+ 处理器具有低门数,高效能的特点,特别适合于对面积优化和低功耗处理器有要求的单片机及深度嵌入式应用。Cortex[™]-M0+ 处理器基于 ARMv6-M 架构,支持 Thumb® 指令集、单周期 I/O 端口、硬件乘法器和具有低延迟中断响应时间。

片上存储器

- 高达 64KB 片上 Flash 存储器用于指令 / 数据和选项存储
- 8KB 片上 SRAM
- 支持多种启动模式

ARM® Cortex TM -M0+ 处理器与调试通过同一条外部接口访问外部 AHB 外设。处理器访问优先于调试访问。Cortex TM -M0+ 的最大地址范围是 4GB,因为它具有 32-bit 总线地址宽度。此外,Cortex TM -M0+ 处理器提供的预先定义的存储器映射,可减少不同单片机供应商重复执行软件的复杂性。但有一些区域为 ARM® Cortex TM -M0+ 系统外设所使用。更多信息可参考 ARM® Cortex TM -M0+ 技术参考手册。图 2 为 HT32F52231/52241 及 HT32F52331/52341 系列单片机的存储器映射,包括代码、SRAM、外设和其它预先定义的区域。

Flash 存储器控制器 - FMC

- Flash 加速器获得最大效率
- 支持在线系统编程 (ISP) 和在线应用编程 (IAP) 的 32-bit 字编程功能
- Flash 保护功能以阻止非法访问

Flash 存储器控制器 FMC 为嵌入式片上 Flash 存储器提供所有必要的功能和预抓取缓存器。由于 Flash 存储器访问速度比 CPU 慢, 故提供一个带有可预抓取缓冲区缓存的宽访问接口来减少 CPU 等待时间避免指令执行的延迟。 Flash 存储器还提供字编程 / 页擦除功能。

复位控制单元 - RSTCU

- 电源监控
 - 上电 / 掉电复位 POR/PDR
 - 欠压检测器 BOD
 - 可编程低电压检测器 LVD

复位控制单元 RSTCU 有三种复位方式,分别是上电复位、系统复位和 APB 单元复位。上电复位,被称为冷复位,在上电时复位整个系统。系统复位复位了处理器内核和除 SW-DP 控制器以外的外设 IP 元件。这些复位可以通过外部信号、内部事件和复位发生器触发。

时钟控制单元 - CKCU

- 外部 4~16MHz 晶振
- 外部 32,768Hz 晶振
- 在工作电压为 3.3V, 工作温度为 25°C 下, 内部 8MHz RC 振荡器精度可调整至 ±2%
- 内部 32kHz RC 振荡器
- 集成系统时钟 PLL
- 独立的时钟分频器与门控位用于外设时钟源

时钟控制单元 CKCU 提供了一系列振荡器和时钟功能,包括内部高速 RC 振荡器 (HSI)、外部高速晶振 (HSE)、内部低速 RC 振荡器 (LSI)、外部低速晶振 (LSE)、锁相环 (PLL)、HSE 时钟监控、时钟预分频器、时钟倍频器、APB 时钟分频器和门控电路。AHB、APB 和 CortexTM-M0+的时钟来源于系统时钟 (CK_SYS),而系统时钟可以来自 LSI、LSE、HSI、HSE 或者 PLL。看门狗定时器和实时时钟 (RTC) 使用 LSI 或者 LSE 作为它们的时钟源。

申源管理 - PWRCU

- 单一 V_{DD} 电源: 2.0V~3.6V
- 集成 1.5V LDO 稳压器用作 CPU 内核、外设和存储器电源
- V_{DD} 电源供电给 RTC
- 两个电源域: V_{DD} 和 1.5V
- 四种省电模式: 休眠模式、深度休眠模式 1、深度休眠模式 2、暂停模式

功耗被视为许多嵌入式系统应用中最重要的问题之一。因此,在这些单片机中,电源控制单元 PWRCU 提供多种省电模式如休眠模式、深度休眠模式 1、深度休眠模式 2、暂停模式。这些工作模式可以降低功耗,使应用在 CPU 运行时间、速度和功耗这些相互冲突的需求中达到最佳平衡。

外部中断/事件控制器 - EXTI

- 多达 16 个触发源和触发类型可选的 EXTI 端口
- 所有 GPIO 引脚都可选作 EXTI 触发源
- 触发源类型包括: 高电平、低电平、下降沿、上升沿或双沿
- 每个 EXTI 端口都有独立的中断使能、唤醒使能和状态位
- 每个 EXTI 端口都支持软件中断触发模式
- 集成短时脉冲滤波器可消除短脉冲

外部中断/事件控制器EXTI由16个边沿检测器组成。每个都可进行独立的唤醒和中断请求设置。每个EXTI端口也可被单独屏蔽。

模数转换器 - ADC

- 12-bit SAR A/D 转换器启动装置
- 高达 1 Msps 转换速率
- 多达 12 个外部模拟信号输入通道

此系列单片机包含一个多通道 12-bit A/D 转换器, 其具有多路复用通道, 包括 12 个外部模拟信号通道和 2 个内部通道可进行测量。如果输入的电压要求保持在一个特定的阈值窗口, 模拟看门狗功能可用于监控和检测这些信号。当输入电压高于或低于设定的阈值, 将产生中断以告知单片机。有三种转换模式用来把模拟信号转换成数字数据。A/D 转换器可工作在单次转换、连续和非连续转换模式。

输入/输出端口-GPIO

- 多达 40 个通用输入 / 输出口 (GPIO)
- 端口A、B、C映射为16个外部中断-EXTI
- 几乎所有 I/O 引脚都具有可编程输出驱动电流

此系列单片机有多达 40 个通用 I/O 引脚, GPIO, 即 PA0~PA15 到 PC0~PC7, 用于执行逻辑输入 /输出功能。每个 GPIO 端口都有一系列相关的控制和配置寄存器, 扩大了灵活性可满足多种应用需求。

在封装上 GPIO 引脚与其它替代功能引脚共用,以获得最大的灵活性。通过配置相应的寄存器, GPIO 口可以被用作替代功能引脚而非输入或输出脚。对单片机 GPIO 引脚的外部中断在外部中 断控制单元, EXTI, 都有相关的控制和配置寄存器。

马达控制定时器 - MCTM

- 1 个 16-bit 向上、向下、向上 / 向下自动重载计数器
- 16-bit 可编程预分频器对计数器时钟进行 1~65536 分频率分频
- 输入捕捉功能
- 比较匹配输出
- PWM 波形产生功能支持边沿对齐和中心对齐计数模式
- 单脉冲输出模式
- 带可编程死区时间插入的互补输出
- 支持三相马达控制和霍尔传感器接口
- 输入暂停可强制定时器输出复位或输出固定电平

马达控制定时器包括一个 16-bit 向上 / 向下计数器、四个 16-bit 捕捉 / 比较寄存器 (CCR)、一个 16-bit 计数器重装载寄存器 (CRR)、一个 8-bit 重复计数器和几个控制 / 状态寄存器。可用于多种用途,包括测量输入信号脉冲宽度或产生输出波形,如比较匹配输出、PWM 输出或带死区时间插入的 PWM 互补输出。MCTM 能够为马达控制、霍尔传感器接口和制动输入提供全功能支持。

PWM 产生和捕捉定时器 - GPTM

- 1 个 16-bit 向上、向下、向上 / 向下自动重载计数器
- 16-bit 可编程预分频器对计数器时钟进行 1~65536 分频率分频
- 输入捕捉功能
- 比较匹配输出
- PWM 波形产生功能支持边沿对齐和中心对齐计数模式
- 单脉冲输出
- 使用正交解码器带两个输入端口的编码器接口控制器

通用定时器包括一个 16-bit 向上 / 向下计数器、4 个 16-bit 捕捉 / 比较寄存器 (CCR)、一个 16-bit 计数器重装载寄存器 (CRR) 和几个控制 / 状态寄存器。可用于多种用途,包括通用计时、测量输入信号脉冲宽度或产生输出波形,如单脉冲波形产生或 PWM 输出。GPTM 支持带两个输入端口使用解码器的编码器接口。

单通道产生与捕捉定时器 - SCTM

- 1 个 16-bit 向上自动重载计数器
- 每个计数器有一个通道
- 16-bit 可编程预分频器对计数器时钟进行 1~65536 分频率分频
- 输入捕捉功能
- 比较匹配输出
- PWM 波形产生功能支持边沿对齐计数模式
- 单脉冲输出模式

单通道定时器包括一个 16-bit 向上计数器、4 个 16-bit 捕捉 / 比较寄存器 (CCR)、一个 16-bit 计数器重装载寄存器 (CRR) 和几个控制 / 状态寄存器。可用于多种用途,包括通用计时、测量输入信号脉冲宽度或产生输出波形,如单脉冲波形产生或 PWM 输出。

基本功能定时器 - BFTM

- 1 个 32-bit 比较 / 匹配向上计数器 无 I/O 控制功能
- 单次模式 匹配条件产生后停止计数
- 重复模式 匹配条件产生后重启计数器

基本功能定时器是一个简单的32-bit 向上计数器,可用于测量时间间隔并产生单次或者重复中断。BFTM支持两种功能模式即重复模式或单次模式。在重复模式下,当一个比较匹配事件发生时,BFTM重启计数器。在单次模式下,当一个比较匹配事件发生时,计数器停止计数。

看门狗定时器 - WDT

- 带有 3-bit 预分频器的 12-bit 向下计数器
- 可产生系统复位
- 可编程看门狗定时器窗口功能
- 寄存器写保护功能

看门狗定时器是一个硬件定时电路,可用于检测因软件错误导致的系统故障。它包括一个12-bit 向下计数器、一个预分频器、一个WDT增量值寄存器、WDT控制电路和WDT保护机制。如果软件在看门狗定时器溢出前没有重新载入计数器值,计数器溢出时将产生复位。此外,当计数器值大于WDT增量值时,如果软件重新加载计数器,也会产生复位。这意味着必须在有限的计时窗口内用指定方式重新载入计数器值。当处理器处于调试模式,看门狗定时器计数器停止计数。寄存器写保护功能被使能时,可防止看门狗定时器配置的突然改变。

实时时钟 - RTC

- 带可编程预分频器的 24-bit 向上计数器
- 报警功能
- 中断和唤醒事件

实时时钟 RTC 包括一个 APB 接口、一个 24-bit 向上计数器、一个控制寄存器、一个预分频器、一个比较寄存器和一个状态寄存器。RTC 电路大多位于备份域。但 APB 接口位于 V_{DDIS} 电源域。因此当单片机进入暂停模式 V_{DDIS} 电源域会发生掉电,此时需隔离来自电源控制单元的的 ISO 信号。RTC 计数器被用作唤醒定时器使系统从暂停模式中恢复。

Rev. 1.30 10 of 52 2016-10-14

内部集成电路 - I2C

- 支持高达 1MHz 频率的主机 / 从机模式
- 提供仲裁功能和时钟同步功能
- 支持 7-bit 和 10-bit 寻址模式和一般呼叫寻址
- 支持带可屏蔽地址的多种从机寻址模式

 I^2C 内部电路可与外部 I^2C 接口通信,是一个符合工业标准的两线串行接口用于外部硬件连接。这两个串行线分别为串行数据线 SDA 和串行时钟线 SCL。 I^2C 模块提供了三种数据传输速率: 100kHz 标准模式、400kHz 快速模式和 1MHz 快速 + 模式。 SCL 周期产生寄存器可为 SCL 脉冲设置不同的占空比。

SDA 线是一条直接连接到 I²C 总线的双向数据线,用于主机和从机间数据的传输和接收。I²C 模块还具有仲裁检测和时钟同步功能,可防止多个主机试图同时传送数据到 I²C 总线的情况。

串行外设接口 - SPI

- 支持主机 / 从机模式
- 主机模式频率高达 (f_{PCLK}/2) MHz 和从机模式频率高达 (f_{PCLK}/3) MHz
- FIFO 深度: 8级
- 多主机和多从机操作

串行外设接口 SPI 提供了一个以 SPI 协议进行的主 / 从模式下的数据发送和接收功能。SPI 接口使用 4 个引脚分别为串行数据输入 / 输出线 MISO 和 MOSI、时钟线 SCK 以及从机选择线 SEL。 SPI 通信时,主机使用 SEL 和 SCK 信号控制数据流来指示数据通信开始和数据采样率。接收数据字节时,数据流在指定的时钟边沿被锁存且存储在数据寄存器或 RX FIFO。数据发送也是通过类似的方式,但以相反的顺序。模式故障检测功能使其适用于多主机应用。

通用同步异步收发器 - USART

- 支持异步和时钟同步串行通信模式
- 异步工作频率高达 (f_{PCLK}/16) MHz, 同步工作频率高达 (f_{PCLK}/8) MHz
- 全双工通信
- 完全可编程串行接口通信特性包括:
 - 字长: 7, 8 或 9-bit 字符
 - 校验位: 奇校验、偶校验或无校验位产生及检测
 - 停止位: 1或2位停止位
 - 位顺序: 低位优先或高位优先传输
- 错误侦测: 奇偶校验、溢出和帧错误
- 自动硬件流控制模式 RTS、CTS
- IrDA SIR 编码器和解码器
- 具有输出使能控制的 RS485 模式
- FIFO 深度: 8×9 位接收器和发送器

通用同步异步收发器 USART 提供了一个灵活的采用同步或异步传输的全双工数据交换方式。USART 用来转换并行和串行接口之间的数据,通常也被用作 RS232 标准通信。USART 外设功能支持四种类型的中断,包括线路状态中断、发送 FIFO 空中断、接收器阈值级别到达中断和超时中断。USART 模块包括一个发送器 FIFO (TX_FIFO) 和一个接收器 FIFO (RX_FIFO)。通过读取线路状态寄存器 LSR,软件可以检测 USART 的错误状态。状态包括传输模式类型和状况以及因奇偶校验、溢出、帧和暂停事件造成的错误状况。

通用异步收发器 - UART

- 异步串行通信工作频率高达 (f_{PCLK}/16) MHz
- 全双工通信
- 完全可编程串行接口通信特性包括:
 - 字长: 7、8 或 9-bit 字符
 - 校验位: 奇校验、偶校验或无校验位产生及检测
 - 停止位: 1或2位停止位
 - 位顺序: 低位优先或高位优先传输
- 错误侦测: 奇偶校验、溢出和帧错误

通用异步收发器 UART 提供了一个灵活的采用异步传输的全双工数据交换方式。UART 用来转换并行和串行接口之间的数据,通常也被用作 RS232 标准通信。UART 外设功能支持线路状态中断。通过读取线路状态寄存器 LSR,软件可以检测 UART 的错误状态。状态包括传输模式的类型和状况以及因奇偶校验、溢出,帧和暂停事件造成的错误状况。

智能卡接口 - SCI (仅 HT32F52331/HT32F52341)

- 支持 ISO 7816-3 标准
- 字符模式
- 一个发送缓冲器和一个接收缓冲器
- 11-bit ETU (基本时间单位) 计数器
- 9-bit 时间保护计数器
- 24-bit 通用等待时间计数器
- 奇偶校验产生和检测
- 发送和接收模式下检测到奇偶错误时自动进行字符重发

智能卡接口与 ISO 7816-3 标准兼容。该接口包括卡插入 / 移除检测、SCI 数据发送控制逻辑和数据缓冲器、内置定时器计数器和相关的控制逻辑电路来完成所有与智能卡有关的操作。智能卡接口作为一个智能卡读卡器,便于与外部智能卡通信。整个智能卡接口功能由一系列寄存器控制,包括控制和状态寄存器以及几个相关中断,这些中断的产生可使得单片机及时关注到 SCI 接口通信状态。

循环冗余校验 - CRC

- 支持 CRC16 多项式: 0x8005, X¹⁶+X¹⁵+X²+¹
- 支持 CCITT CRC16 多项式: 0x1021, X¹⁶+X¹²+X⁵+1
- 支持 IEEE-802.3 CRC32 多项式: 0x04C11DB7, X³²+X²⁶+X²³+X²²+X¹⁶+X¹²+X¹¹+X¹⁰+X⁸+X⁷+X⁵+X⁴+X²+X+1
- 支持对数据和校验码进行1的补码、字节取反&位取反操作
- 支持字节、半字和字数据大小
- 可编程 CRC 初始种子值
- CRC 计算对 8-bit 数据需 1 AHB 时钟周期,对 32-bit 数据需 4 AHB 时钟周期
- 支持 PDMA 对一个存储器区块进行 CRC 计算

Rev. 1.30 12 of 52 2016-10-14

CRC 计算单元是用于验证数据传输或存储的数据正确性的错误检测技术测试算法。CRC 计算将数据流或数据块作为输入生成一个 16-bit 或 32-bit 输出余数。通常情况下,数据流带 CRC 后缀,且当被发送或存储时用作校验码。因此,对接收或重新储存的数据流做与上述相同的生成多项式计算处理。如果新的 CRC 码结果与先前计算的不匹配,这意味着数据流中出现了错误。

通用串行总线设备控制器 - USB (仅 HT32F52331/HT32F52341)

- 符合 USB 2.0 全速 (12Mbps) 规范
- 片上 USB 全速收发器
- 1 个控制端点 (EP0) 可用于控制传输
- 3 个带单缓冲区的端点可用于批量和中断传输
- 4 个带双缓冲区的端点可用于批量、中断和同步传输
- 1,024 字节 EP-SRAM 用于端点数据缓冲区

USB 设备控制器符合 USB 2.0 全速规范。有一个被称为端点 0 的控制端点和七个可配置端点。一个1024字节的 SRAM 被用作端点数据缓冲器。每个端点缓冲器大小可通过相应的寄存器来设置,这将为不同应用提供最大的灵活性。内置的 USB 全速收发器可减少总的系统复杂度和成本。USB 功能块也支持恢复和暂停操作以满足低功耗的需求。

调试支持

- 串行线调试端口 SW-DP
- 4 个用于硬件断点或代码 / 文字修补的比较器
- 2 个用于硬件观察点的比较器

封装和工作温度

- HT32F52231/52241 封装类型: 24/28-pin SSOP、33-pin QFN、48-pin LQFP
- HT32F52331/52341 封装类型: 33-pin QFN、48-pin LQFP
- 工作温度: -40°C~+85°C

3 概述

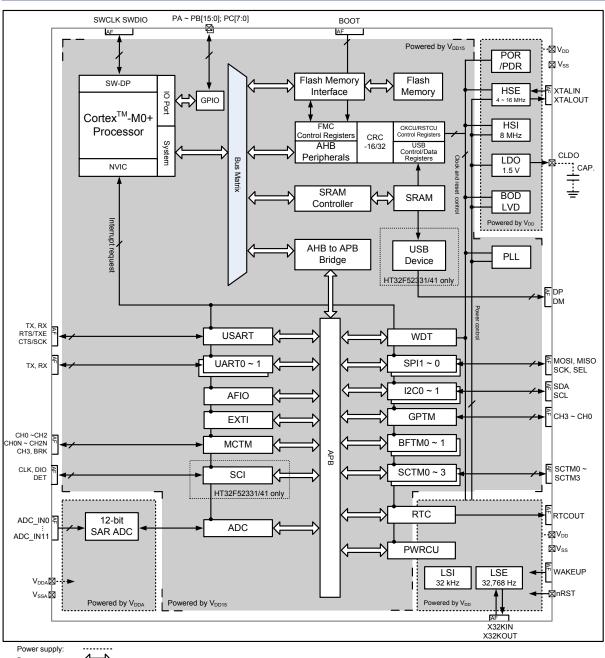

单片机信息

表 1. 特性及外设列表

外	·设	HT32F52231	HT32F52241	HT32F52331	HT32F52341
主 Flash (KB)		32	63	32	63
选项字节 Flash (KI	B)	1	1	1	1
SRAM (KB)		4	8	4	8
	MCTM	1			
	GPTM	1			
定时器	SCTM	4			_
足円的	BFTM	2			
	RTC	1			
	WDT	1			
	USB	_		1	
	SPI	2			
通信	USART	1			
地行	UART	2			
	I ² C	2			
	SCI (ISO7816-3)	_		1	
CRC-16/32		1			
EXTI		16			
12-bit A/D 转换器		1			
通道数量		12 个通道			
GPIO		多达 40		多达 38	
CPU 频率		高达 40 MHz		高达 48 MHz	
工作电压		2.0 V ~ 3.6 V			
工作温度		-40°C ~ +85°C			
封装类型		24/28-pin SSOP 33-pin QFN, 48-		33-pin QFN, 48-	-pin LQFP

方框图

Bus:
Control signal:
Alternate function:

图 1. 方框图

存储器映射

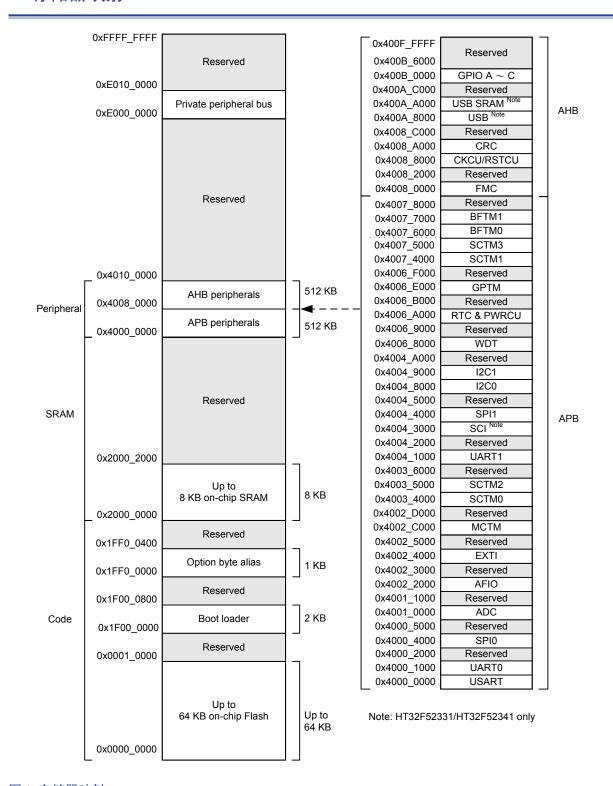


图 2. 存储器映射

表 2. 寄存器映射

起始地址	终止地址	外设	总线
0x4000_0000	0x4000_0FFF	USART	
0x4000_1000	0x4000_1FFF	UART0	
0x4000_2000	0x4000_3FFF	保留	
0x4000_4000	0x4000_4FFF	SPI0	
0x4000_5000	0x4000_FFFF	保留	
0x4001_0000	0x4001_0FFF	ADC	
0x4001_1000	0x4002_1FFF	保留	
0x4002_2000	0x4002_2FFF	AFIO	
0x4002_3000	0x4002_3FFF	保留	
0x4002_4000	0x4002_4FFF	EXTI	
0x4002_5000	0x4002_BFFF	保留	
0x4002_C000	0x4002_CFFF	MCTM	
0x4002_D000	0x4003_3FFF	保留	
0x4003_4000	0x4003_4FFF	SCTM0	
0x4003_5000	0x4003_5FFF	SCTM2	
0x4003_6000	0x4004_0FFF	保留	
0x4004_1000	0x4004_1FFF	UART1	
0x4004_2000	0x4004_2FFF	保留	APB
0x4004_3000	0x4004_3FFF	SCI注	
0x4004_4000	0x4004_4FFF	SPI1	
0x4004_5000	0x4004_7FFF	保留	
0x4004_8000	0x4004_8FFF	I2C0	
0x4004_9000	0x4004_9FFF	I2C1	
0x4004_A000	0x4006_7FFF	保留	
0x4006_8000	0x4006_8FFF	WDT	
0x4006_9000	0x4006_9FFF	保留	
0x4006_A000	0x4006_AFFF	RTC/PWRCU	
0x4006_B000	0x4006_DFFF	保留	
0x4006_E000	0x4006_EFFF	GPTM	
0x4006_F000	0x4007_3FFF	保留	
0x4007_4000	0x4007_4FFF	SCTM1	
0x4007_5000	0x4007_5FFF	SCTM3	
0x4007_6000	0x4007_6FFF	BFTM0	
0x4007_7000	0x4007_7FFF	BFTM1	
0x4007_8000	0x4007_FFFF	保留	

Rev. 1.30 17 of 52 2016-10-14

起始地址	终止地址	外设	总线
0x4008_0000	0x4008_1FFF	FMC	
0x4008_2000	0x4008_7FFF	保留	
0x4008_8000	0x4008_9FFF	CKCU/RSTCU	
0x4008_A000	0x4008_BFFF	CRC	
0x4008_C000	0x400A_7FFF	保留	
0x400A_8000	0x400A_BFFF	USB 注	AHB
0x400A_C000	0x400A_FFFF	保留	
0x400B_0000	0x400B_1FFF	GPIOA	
0x400B_2000	0x400B_3FFF	GPIOB	
0x400B_4000	0x400B_5FFF	GPIOC	
0x400B_6000	0x400F_FFFF	保留	

注: 仅 HT32F52331/HT32F52341 单片机支持。

时钟结构

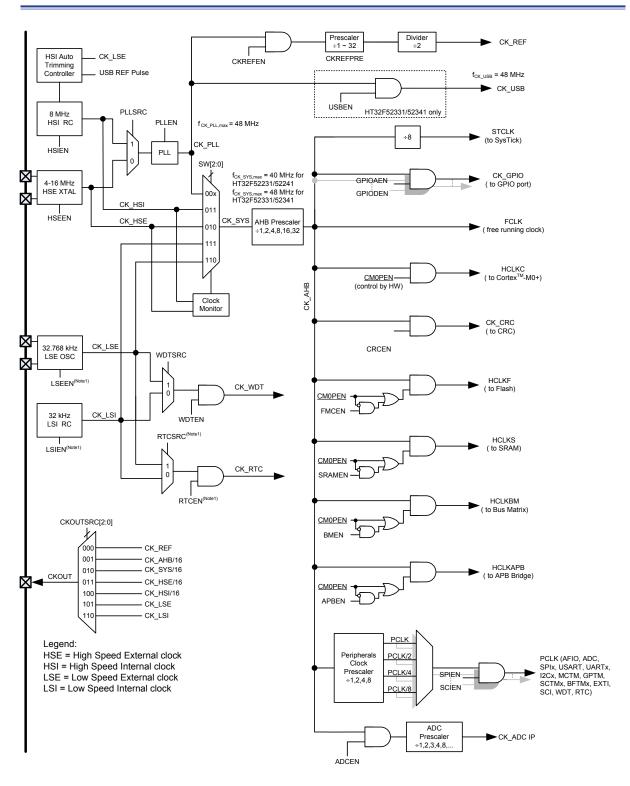


图 3. 时钟结构图

4

引脚图

HT32F52231/HT32F52241 24 SSOP-A

AF0 (Default))					AF0 (Default)	AF1
PB7	1	33V			33V	24	PB4	
PB8	2	33V	P33 3	3.3 V Digital Power Pad	33V	23	PB3	
VDDA	3	AP	AP :	3.3 V Analog Power Pad	33V	22	PB2	
PA0	4	33V	AF ,	5.5 V Alialog Powel Pad	33V	21	PB1	
PA1	5	33V	P15	1.5 V Power Pad	33V	20	PB0	
PA2	6	33V	33V ;	3.3 V Digital & Analog IO Pad	33V	19	SWDIO	PA13
PA3	7	33V	330	5.5 V Digital & Alialog IO Fau	33V	18	SWCLK	PA12
PA4	8	33V	33V 3	3.3 V Digital I/O Pad	33V	17	PA9_BOOT	
PA5	9	33V			33V	16	XTALOUT	PB14
CLDO	10	P15			33V	15	XTALIN	PB13
VDD	11	P33			33V	14	RTCOUT	PB12
VSS	12	P33			33V	13	nRST	

图 4. HT32F52231/52241 24-pin SSOP 引脚图

HT32F52231/HT32F52241 28 SSOP-A

AF0 (Default)	()				AF0 (Default)	AF1
PB7	1	33V		33V	28	PB4	
PB8	2	33V	P33 3.3 V Digital Power Pad	33V	27	PB3	
VDDA	3	AP	AP 3.3 V Analog Power Pad	33V	26	PB2	
PA0	4	33V	AP 3.3 V Analog Power Pad	33V	25	PB1	
PA1	5	33V	P15 1.5 V Power Pad	33V	24	PB0	
PA2	6	33V	33V 3.3 V Digital & Analog IO Pad	33V	23	PA15	
PA3	7	33V	3.3 V Digital & Arialog IO Pad	33V	22	PA14	
PA4	8	33V	33V 3.3 V Digital I/O Pad	33V	21	SWDIO	PA13
PA5	9	33V		33V	20	SWCLK	PA12
PA6	10	33V		33V	19	PA9_BOOT	
PA7	11	33V		33V	18	XTALOUT	PB14
CLDO	12	P15		33V	17	XTALIN	PB13
VDD	13	P33		33V	16	RTCOUT	PB12
VSS	14	P33		33V	15	nRST	

图 5. HT32F52231/52241 28-pin SSOP 引脚图

HT32F52231/HT32F52241 33 QFN-A VDDA PB5 PB8 PB7 PB4 PB3 PB2 AF0 AF0 AF1 32 31 30 29 28 27 26 25 (Default) (Default) 0 AP 33V 33V 33V 33V 33V PB1 PA0 33V 24 P33 3.3 V Digital Power Pad 2 PA1 33V 33V 23 PB0 3.3 V Analog Power Pad PA2 3 33V 33V 22 PA15 P15 1.5 V Power Pad PA3 4 33V 21 PA14 33V 33V 3.3 V Digital & Analog IO Pad PA4 5 33V 33V 20 SWDIO PA13 33V 3.3 V Digital I/O Pad SWCLK PA12 PA5 6 33V 19 33V PA9_ BOOT 7 PA6 33V 18 33V VDD VDD Domain Pad PA7 8 33 VSS 33V 17 XTALOUT PB14 VDD VDD VDD 33V 33V 33V VDD 33V P15 P33 P33 33V 9 10 11 12 13 14 15 16 XTALIN X32KIN CLDO nRST VDD VSS PB10 PB11 PB12 PB13 Æ,

图 6. HT32F52231/52241 33-pin QFN 引脚图

						Н		52231 48 LC		F5224	41							
			VSSA	VDDA	PB8	PB7	PB6	PC3	PC2	PC1	PB5	PB4	PB3	PB2		AF0 (Default)		
AF0 (Default)		$\overline{}$	48	47	46	45	44	43	42	41	40	39	38	37			AF0 (Default)	AF1
	')	AP	AP	33V	33V	33V	33V	33V	33V	33V	33V	33V	33V				
PA0	1	33V									,				P33	36	VSS_2	
PA1	2	33V													P33	35	VDD_2	
PA2	3	33V			P33	3.3	V Digit	al Pow	er Pad						33V	34	PB1	
PA3	4	33V			AP	3.3	V Anal	log Pov	ver Pa	d					33V	33	PB0	
PA4	5	33V													33V	32	PA15	
PA5	PA5 6 33V P15 1.5 V Power Pad										33V	31	PA14					
PA6	7												33V	30	SWDIO	PA13		
PA7	8	33V													33V	29	SWCLK	PA12
PC4	9	33V			33\	3.3	V Digit	al I/O F	Pad						33V	28	PA11	
PC5	10	33V			VDE	VDI	D Dom	ain Pad	t						33V	27	PA10	
PC6	11	33V													33V	26	PA9_ BOOT	
PC7	12	33V													33V	25	PA8	
			P15	P33	P33	VDD 33V	VDD 33V	VDD 33V	VDD 33V	VDD 33V	33V	33V	33V	33V				
			13	14	15	16	17	18	19	20	21	22	23	24				
AFO (Default) PCO PB15 XTALOUT XTALIN RTCOUT X32KOUT X32KOUT X32KOUT VSS_1 VDD_1 CLDO																		
								PB10	PB11	PB12	PB13	PB14				AF1		

图 7. HT32F52231/52241 48-pin LQFP 引脚图

HT32F52331/HT32F52341 33 QFN-A VDDA VSSA PB8 PB7 PB5 PB4 PB3 PB2 AF0 AF0 AF1 32 30 31 29 28 27 26 25 (Default) (Default) 0 33V 33V 33V 33V 33V 33V PB1 PA0 33V 33V 24 3.3 V Digital Power Pad PA1 2 33V 33V 23 PB0 3.3 V Analog Power Pad PA2 3 22 PA15 33V 33V 1.5 V Power Pad P15 PA3 4 33V 33V 21 PA14 33V 3.3 V Digital & Analog IO Pad PA4 33V 20 SWDIO PA13 5 33V 3.3 V Digital I/O Pad 33V SWCLK PA12 PA5 6 33V 33V 19 PA9_ BOOT VDD VDD Domain Pad **USBDM** 7 USB 33V 18 USBDP USB USB USB PHY Pad XTALOUT 8 33 VSS 33V 17 PB14 VDD VDD VDD VDD 33V 33V 33V 33V P33 P33 33V 10 11 12 14 15 16 9 13 RTCOUT X32KOUT XTALIN AF0 (Default) CLDO nRST VDD VSS PB10 PB12 ΑĘ

图 8. HT32F52331/52341 33-pin QFN 引脚图

								НТ3:	2F523 48	31/HT LQFF		2341								
				VSSA	VDDA	PB8	PB7	PB6	PC3	PC2	PC1	PB5	PB4	PB3	PB2		AF0 (Default)			
	AF0 (Default)		`	48	47	46	45	44	43	42	41	40	39	38	37			AF0 (Default)	AF1	
		`)	AP	AP	33V	33V	33V	33V	33V	33V	33V	33V	33V	33V					
	PA0	1	33V													P33	36	VSS_2		
	PA1	2	33V			P33	3.3 V	Digita	l Powe	r Pad						P33	35	VDD_2		
	PA2	3	33V			AP		Analo	g Powe	or Dod						33V	34	PB1		
	PA3	4	33V			AF	3.3 V	Allalo	y rowe	i rau						33V	33	PB0		
	PA4	5	33V			P15	1.5 V	Powe	r Pad							33V	32	PA15		
PA5 6 33V 33V Digital & Analog IO Pad 33V 31 PA14																				
										PA13										
	PA7	8	33V			33V	3.3 V	Digita	I I/O Pa	ad						33V	29	SWCLK	PA12	
	PC4	9	33V			USB	LISB	PHY P	ad							33V	28	PA11		
	PC5	10	33V			ООВ	COD		au							33V	27	PA10		
	USBDM	11	USB			VDD	VDD	Domai	n Pad							33V	26	PA9_ BOOT		
	USBDP	12	USB													33V	25	PA8		
				P15	P33	P33	VDD 33V	VDD 33V	VDD 33V	VDD 33V	VDD 33V	33V	33V	33V	33V					
				13	14	15	16	17	18	19	20	21	22	23	24					
				CLDO	VDD_1	VSS_1	nRST	PB9	X32KIN	X32KOUT	RTCOUT	XTALIN	XTALOUT	PB15	PC0		AF0 (Default)			
									PB10	PB11	PB12	PB13	PB14			-	AF1			

图 9. HT32F52331/52341 48-pin LQFP 引脚图

表 3. HT32F52231/52241 引脚分配 – 24/28-pin SSOP, 33-pin QFN, 48-pin LQFP 封装

	714	-₩ III								HT32F5	2231/52	241 替什	功能						
	封装	类型		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
48 LQFP	33 QFN	28 SSOP	24 SSOP	系统 默认	GPIO	ADC	N/A	GPTM /MCTM	SPI	USART /UART	I²C	N/A	N/A	N/A	N/A	N/A	SCTM	N/A	系统 其它
1	1	4	4	PA0		ADC_ IN2		GT_CH0	SPI1_ SCK	USR_ RTS	I2C1_ SCL								
2	2	5	5	PA1		ADC_ IN3		GT_CH1	SPI1_ MOSI	USR_ CTS	I2C1_ SDA								
3	3	6	6	PA2		ADC_ IN4		GT_CH2	SPI1_ MISO	USR_ TX									
4	4	7	7	PA3		ADC_ IN5		GT_CH3	SPI1_ SEL	USR_ RX									
5	5	8	8	PA4		ADC_ IN6		GT_CH0	SPI0_ SCK	UR1_ TX	I2C0_ SCL								
6	6	9	9	PA5		ADC_ IN7		GT_CH1	SPI0_ MOSI	UR1_ RX	I2C0_ SDA								
7	7	10		PA6		ADC_ IN8		GT_CH2	SPI0_ MISO										
8	8	11		PA7		ADC_ IN9		GT_CH3	SPIO_ SEL										
9				PC4		ADC_ IN10				USR_ TX							SCTM0		
10				PC5		ADC_ IN11				USR_ RX							SCTM1		
11				PC6				MT_CH2		UR0_ TX	I2C0_ SCL								
12				PC7				MT_ CH2N		UR0_ RX	I2C0_ SDA								
13	9	12	10	CLDO															
14	10	13	11	VDD_1															
15	11	14	12	VSS_1															
16	12	15	13	nRST															
17				PB9				MT_CH3	SPI1_	USR_									
18	13			X32KIN	PB10			GT_CH0	SEL SPI1_	TX USR_							SCTM2		
19	14			X32KOUT	PB11			GT_CH1	SCK SPI0	RX UR0_							SCTM3		
20	15	16	14	RTCOUT	PB12				MISO	RX	I2C0						SCTM0		WAKEUP
21	16	17	15	XTALIN	PB13					UR0_ TX	SCL								
22	17	18	16	XTALOUT	PB14					UR0_ RX	I2C0_ SDA								
23				PB15				MT_CH0	SPI0_ SEL		I2C1_ SCL								
24				PC0				MT_ CH0N	SPI0_ SCK		I2C1_ SDA						SCTM3		
25				PA8						USR_ TX							SCTM2		
26	18	19	17	PA9_BOOT					SPI0_ MOSI								SCTM3		CKOUT
27				PA10				MT_CH1	SPI0_ MOSI	USR_ RX									
28				PA11				MT_ CH1N	SPI0_ MISO								SCTM0		
29	19	20	18	SWCLK	PA12														
30	20	21	19	SWDIO	PA13				CDII	Hen	1201								
31	21	22		PA14				MT_CH0	SPI1_ SEL	USR_ RTS	I2C1_ SCL								
32	22	23		PA15				MT_ CH0N	SPI1_ SCK	USR_ CTS	I2C1_ SDA						SCTM1		
33	23	24	20	PB0				MT_CH1	SPI1_ MOSI	USR_ TX	I2C0_ SCL								
34	24	25	21	PB1				MT_ CH1N	SPI1_ MISO	USR_ RX	I2C0_ SDA						SCTM2		
35				VDD_2															

					HT32F52231/52241 替代功能														
	封装	类型		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
48 LQFP	33 QFN	28 SSOP	24 SSOP	系统 默认	GPIO	ADC	N/A	GPTM /MCTM	SPI	USART /UART	I ² C	N/A	N/A	N/A	N/A	N/A	SCTM	N/A	系统 其它
36	33			VSS_2															
37	25	26	22	PB2				MT_CH2	SPIO_ SEL	UR1_ TX									
38	26	27	23	PB3				MT_ CH2N	SPI0_ SCK	UR1_ RX							SCTM1		
39	27	28	24	PB4				MT_BRK	SPI0_ MOSI	UR1_ TX							SCTM0		
40	28			PB5				GT_CH2	SPI0_ MISO	UR1_ RX									
41				PC1				MT_CH0	SPI1_ SEL	UR1_ TX									
42				PC2				MT_ CH0N	SPI1_ SCK										
43				PC3				MT_BRK	SPI1_ MOSI	UR1_ RX									
44				PB6				GT_CH3	SPI1_ MISO	UR0_ TX									
45	29	1	1	PB7		ADC_ IN0		MT_CH1	SPI0_ MISO	UR0_ TX	I2C1_ SCL								
46	30	2	2	PB8		ADC_ IN1		MT_ CH1N	SPIO_ SEL	UR0_ RX	I2C1_ SDA								
47	31	3	3	VDDA															
48	32			VSSA															

注: 33-pin QFN 封装的引脚 33 位于 QFN 封装的底部金属上。

表 4. HT32F52331/52341 引脚分配 – 33-pin QFN, 48-pin LQFP 封装

								HT32F	52331/523	641 替代功	 i能						
封装	类型	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
48 LQFP	33 QFN	系统默认	GPIO	ADC	N/A	GPTM /MCTM	SPI	USART /UART	I ² C	SCI	N/A	N/A	N/A	N/A	SCTM	N/A	系统其它
1	1	PA0		ADC_ IN2		GT_CH0	SPI1_ SCK	USR_ RTS	I2C1_ SCL	SCI_ CLK							
2	2	PA1		ADC_ IN3		GT_CH1	SPI1_ MOSI	USR_ CTS	I2C1_ SDA	SCI_ DIO							
3	3	PA2		ADC_ IN4		GT_CH2	SPI1_ MISO	USR_ TX									
4	4	PA3		ADC_ IN5		GT_CH3	SPI1_ SEL	USR_ RX									
5	5	PA4		ADC_ IN6		GT_CH0	SPIO_ SCK	UR1_ TX	I2C0_ SCL	SCI_ CLK							
6	6	PA5		ADC_ IN7		GT_CH1	SPI0_ MOSI	UR1_ RX	I2C0_ SDA	SCI_ DIO							
7		PA6		ADC_ IN8		GT_CH2	SPIO_ MISO			SCI_ DET							
8		PA7		ADC_ IN9		GT_CH3	SPIO_ SEL										
9		PC4		ADC_ IN10				USR_ TX							SCTM0		
10		PC5		ADC_ IN11				USR_ RX							SCTM1		
11	7	USBDM															
12	8	USBDP															
13	9	CLDO															
14	10	VDD_1															
15	11	VSS_1															
16	12	nRST															
17	12	PB9				MT_CH3											
- 17		F D 7				WII_CIIS	CDI1	LICD									
18	13	X32KIN	PB10			GT_CH0	SPI1_ SEL SPI1_	USR_ TX USR_							SCTM2		
19	14	X32KOUT	PB11			GT_CH1	SCK SPI0_	RX UR0_							SCTM3		
20	15	RTCOUT	PB12				MISO	RX UR0_	I2C0						SCTM0		WAKEUP
21	16	XTALIN	PB13					TX UR0_	SCL I2C0								
	17	XTALOUT	PB14				CDIO	RX	SDA I2C1								
23		PB15				MT_CH0	SPIO_ SEL		SCL								
24		PC0				MT_ CH0N	SPI0_ SCK	HCD	I2C1_ SDA	ec.					SCTM3		
25		PA8					Spiv	USR_ TX		SCI_ CLK					SCTM2		
26	18	PA9_BOOT					MOSI SPIO	USR_		SCI_ DIO					SCTM3		CKOUT
27		PA10				MT_CH1	SPIO_ MOSI SPIO_	RX		SCI_ DET							
28	10	PA11 SWCLK	DA 12			MT_ CH1N	MISO			SCI_ DET					SCTM0		
29	19		PA 12														
30	20	SWDIO	PA13						77.								
31	21	PA14				MT_CH0	SPI1_ SEL	USR_ RTS	I2C1_ SCL	SCI_ CLK							
32	22	PA15				MT_ CH0N	SPI1_ SCK SPI1_	USR_ CTS	I2C1_ SDA I2C0_	SCI_ DIO					SCTM1		
33	23	PB0				MT_CH1	MOSI SPI1_	USR_ TX USR_	SCL I2C0_								
34	24	PB1 VDD_2				MT_ CH1N	MISO	RX	SDA						SCTM2		
	22																
36	33	VSS_2															

±+×+	-₩- #II		HT32F52331/52341 替代功能														
封装	尖型	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
48 LQFP	33 QFN	系统 默认	GPIO	ADC	N/A	GPTM /MCTM	SPI	USART /UART	I²C	SCI	N/A	N/A	N/A	N/A	SCTM	N/A	系统 其它
37	25	PB2				MT_CH2	SPI0_ SEL	UR1_ TX									
38	26	PB3				MT_ CH2N	SPI0_ SCK	UR1_ RX							SCTM1		
39	27	PB4				MT_ BRK	SPI0_ MOSI	UR1_ TX							SCTM0		
40		PB5				GT_CH2	SPIO_ MISO	UR1_ RX									
41		PC1				MT_CH0	SPI1_ SEL	UR1_ TX									
42		PC2				MT_ CH0N	SPI1_ SCK										
43		PC3				MT_ BRK	SPI1_ MOSI	UR1_ RX									
44	28	PB6				GT_CH3	SPI1_ MISO	UR0_ TX		SCI_ CLK							
45	29	PB7		ADC_ IN0		MT_CH1	SPI0_ MISO	UR0_ TX	I2C1_ SCL	SCI_ DET							
46	30	PB8		ADC_ IN1		MT_ CH1N	SPIO_ SEL	UR0_ RX	I2C1_ SDA	SCI_ DIO							
47	31	VDDA															
48	32	VSSA															

注: 33-pin QFN 封装的引脚 33 位于 QFN 封装的底部金属上。

表 5. HT32F52231/52241 引脚描述

		52241 		引脚	类型	I/O 结构	+A .1.7E-1	描述
48LQFP	33QFN	28SSOP	24SSOP	名称	(注1)	(注2)	输出驱动	默认功能 (AF0)
1	1	4	4	PA0	AI/O	33V	4/8/12/16 mA	PA0
2	2	5	5	PA1	AI/O	33V	4/8/12/16 mA	PA1
3	3	6	6	PA2	AI/O	33V	4/8/12/16 mA	PA2
4	4	7	7	PA3	AI/O	33V	4/8/12/16 mA	PA3
5	5	8	8	PA4	AI/O	33V	4/8/12/16 mA	PA4
6	6	9	9	PA5	AI/O	33V	4/8/12/16 mA	PA5
7		10		PA6	AI/O	33V	4/8/12/16 mA	PA6
8		11		PA7	AI/O	33V	4/8/12/16 mA	PA7
9				PC4	AI/O	33V	4/8/12/16 mA	PC4
10				PC5	AI/O	33V	4/8/12/16 mA	PC5
11	7			PC6	AI/O	_	_	PC6
12	8			PC7	AI/O	_	_	PC7
13	9	12	10	CLDO	P	_	_	1.5V LDO 内核电源输出 建议连接一个 1μF 电容, 尽量靠近 CLDO 与 VSS_1 引脚
14	10	13	11	VDD_1	P	_	_	数字 I/O 电压
15	11	14	12	VSS_1	P	_	_	数字 I/O 接地参考电压
16	12	15	13	nRST ^{Note 3}	I	33V_PU	_	外部复位引脚和暂停模式 时外部唤醒引脚
17				PB9 ^{Note 3}	I/O (V _{DD})	33V	4/8/12/16 mA	PB9
18	13			PB10 ^{Note 3}	AI/O (V _{DD})	33V	4/8/12/16 mA	X32KIN
19	14			PB11 Note 3	AI/O (V _{DD})	33V	4/8/12/16 mA	X32KOUT
20	15	16	14	PB12 ^{Note 3}	I/O (V _{DD})	33V	4/8/12/16 mA	RTCOUT
21	16	17	15	PB13	AI/O	33V	4/8/12/16 mA	XTALIN
22	17	18	16	PB14	AI/O	33V	4/8/12/16 mA	XTALOUT
23				PB15	I/O	33V	4/8/12/16 mA	PB15
24				PC0	I/O	33V	4/8/12/16 mA	PC0
25				PA8	I/O	33V	4/8/12/16 mA	PA8
26	18	19	17	PA9	I/O	33V_PU	4/8/12/16 mA	PA9_BOOT
27				PA10	I/O	33V	4/8/12/16 mA	PA10
28				PA11	I/O	33V	4/8/12/16 mA	PA11
29	19	20	18	PA12	I/O	33V_PU	4/8/12/16 mA	SWCLK
30	20	21	19	PA13	I/O	33V_PU	4/8/12/16 mA	SWDIO
31	21	22		PA14	I/O	33V	4/8/12/16 mA	PA14
32	22	23		PA15	I/O	33V	4/8/12/16 mA	PA15
33	23	24	20	PB0	I/O	33V	4/8/12/16 mA	PB0

		 却号		引脚	类型	I/O 结构	<i>‡</i> ∆.11.75.−4	描述
48LQFP	33QFN	28SSOP	24SSOP	名称	(注1)	(注2)	输出驱动	默认功能 (AF0)
34	24	25	21	PB1	I/O	33V	4/8/12/16 mA	PB1
35				VDD_2	P	_	_	数字 I/O 电压
36	33			VSS_2	P	_	_	数字 I/O 接地参考电压
37	25	26	22	PB2	I/O	33V	4/8/12/16 mA	PB2
38	26	27	23	PB3	I/O	33V	4/8/12/16 mA	PB3
39	27	28	24	PB4	I/O	33V	4/8/12/16 mA	PB4
40				PB5	I/O	33V	4/8/12/16 mA	PB5
41				PC1	I/O	33V	4/8/12/16 mA	PC1
42				PC2	I/O	33V	4/8/12/16 mA	PC2
43				PC3	I/O	33V	4/8/12/16 mA	PC3
44	28			PB6	I/O	33V	4/8/12/16 mA	PB6
45	29	1	1	PB7	AI/O	33V	4/8/12/16 mA	PB7
46	30	2	2	PB8	AI/O	33V	4/8/12/16 mA	PB8
47	31	3	3	VDDA	P	_	_	ADC 和比较器模拟电压
48	32			VSSA	P	_	_	ADC 和比较器接地参考电压

注: 1. I: 输入; O: 输出; A: 模拟端口; P: 电源; PU: 上拉; V_{DD}: V_{DD} 电源

- 2.33V: 3.3V 容差
- 3. 这些引脚都位于 V_{DD} 电源域

表 6. HT32F52331/52341 引脚描述

引朋	即号	引脚	类型	I/O 结构	输出	描述
48LQFP	33QFN	名称	(注1)	(注2)	驱动	默认功能 (AF0)
1	1	PA0	AI/O	33V	4/8/12/16 mA	PA0
2	2	PA1	AI/O	33V	4/8/12/16 mA	PA1
3	3	PA2	AI/O	33V	4/8/12/16 mA	PA2
4	4	PA3	AI/O	33V	4/8/12/16 mA	PA3
5	5	PA4	AI/O	33V	4/8/12/16 mA	PA4
6	6	PA5	AI/O	33V	4/8/12/16 mA	PA5
7		PA6	AI/O	33V	4/8/12/16 mA	PA6
8		PA7	AI/O	33V	4/8/12/16 mA	PA7
9		PC4	AI/O	33V	4/8/12/16 mA	PC4
10		PC5	AI/O	33V	4/8/12/16 mA	PC5
11	7	USBDM	AI/O	_	_	USB 微分数据总线符合通用串行总线标准
12	8	USBDP	AI/O	_	_	USB 微分数据总线符合通用串行总线标准
13	9	CLDO	P	_	_	1.5V LDO 内核电源输出 建议连接一个 1µF 电容,尽量靠近 CLDO 与 VSS_1 引脚
14	10	VDD_1	P	_	_	数字 I/O 电压
15	11	VSS_1	P	_	_	数字 I/O 接地参考电压
16	12	nRST ^{Note 3}	I	33V_PU	_	外部复位引脚和暂停模式时外部唤醒引脚
17		PB9 ^{Note 3}	I/O (V _{DD})	33V	4/8/12/16 mA	PB9
18	13	PB10 ^{Note 3}	AI/O (V _{DD})	33V	4/8/12/16 mA	X32KIN
19	14	PB11 ^{Note 3}	AI/O (V _{DD})	33V	4/8/12/16 mA	X32KOUT
20	15	PB12 ^{Note 3}	I/O (V _{DD})	33V	4/8/12/16 mA	RTCOUT
21	16	PB13	AI/O	33V	4/8/12/16 mA	XTALIN
22	17	PB14	AI/O	33V	4/8/12/16 mA	XTALOUT
23		PB15	I/O	33V	4/8/12/16 mA	PB15
24		PC0	I/O	33V	4/8/12/16 mA	PC0
25		PA8	I/O	33V	4/8/12/16 mA	PA8
26	18	PA9	I/O	33V_PU	4/8/12/16 mA	PA9_BOOT
27		PA10	I/O	33V	4/8/12/16 mA	PA10
28		PA11	I/O	33V	4/8/12/16 mA	PA11
29	19	PA12	I/O	33V_PU	4/8/12/16 mA	SWCLK
30	20	PA13	I/O	33V_PU	4/8/12/16 mA	SWDIO
31	21	PA14	I/O	33V	4/8/12/16 mA	PA14
32	22	PA15	I/O	33V	4/8/12/16 mA	PA15
33	23	PB0	I/O	33V	4/8/12/16 mA	PB0
34	24	PB1	I/O	33V	4/8/12/16 mA	PB1
35		VDD_2	P	_	_	数字 I/O 电压

引服		引脚	类型	I/O 结构	输出	描述
48LQFP	33QFN	名称	(注1)	(注2)	驱动	默认功能 (AF0)
36	33	VSS_2	P	_	_	数字 I/O 接地参考电压
37	25	PB2	I/O	33V	4/8/12/16 mA	PB2
38	26	PB3	I/O	33V	4/8/12/16 mA	PB3
39	27	PB4	I/O	33V	4/8/12/16 mA	PB4
40		PB5	I/O	33V	4/8/12/16 mA	PB5
41		PC1	I/O	33V	4/8/12/16 mA	PC1
42		PC2	I/O	33V	4/8/12/16 mA	PC2
43		PC3	I/O	33V	4/8/12/16 mA	PC3
44	28	PB6	I/O	33V	4/8/12/16 mA	PB6
45	29	PB7	AI/O	33V	4/8/12/16 mA	PB7
46	30	PB8	AI/O	33V	4/8/12/16 mA	PB8
47	31	VDDA	P	_	_	ADC 和比较器模拟电压
48	32	VSSA	P	_	_	ADC 和比较器接地参考电压

注: 1. I: 输入; O: 输出; A: 模拟端口; P: 电源; PU: 上拉; V_{DD}: V_{DD} 电源

^{2.33}V: 3.3 V 容差

^{3.} 这些引脚都位于 V_{DD} 电源域

5 电气特性

极限参数

下面的表格说明单片机的极限参数。这里只强调额定功率,超过极限参数所规定的范围将对芯片造成损害,无法预期芯片在上述标示范围外的工作状态,而且若长期在标示范围外的条件下工作,可能影响芯片的可靠性。

表 7. 极限参数

符号	参数	最小值	最大值	单位
$V_{ m DD}$	外部主电源供应电压	V _{SS} - 0.3	$V_{SS} + 3.6$	V
V_{DDA}	外部模拟电源供应电压	V _{SSA} - 0.3	$V_{SSA} + 3.6$	V
V_{IN}	I/O 口输入电压	V _{SS} - 0.3	$V_{SS} + 0.3$	V
T _A	工作温度范围	-40	+85	°C
T_{STG}	储存温度范围	-55	+150	°C
$T_{\rm J}$	最大结点温度	_	+125	°C
P_{D}	总功耗	_	500	mW
V _{ESD}	静电放电电压(人体模式)	-4000	+4000	V

建议直流工作条件

表 8. 建议直流工作条件

TA=25°C,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
V_{DD}	I/O 工作电压	_	2.0	3.3	3.6	V
V_{DDA}	模拟工作电压	_	2.5	3.3	3.6	V

片上 LDO 稳压器特性

表 9. LDO 特性

TA=25°C,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
V_{LDO}	内部 LDO 输出电压	调整后,稳压器输入 V _{DD} ≥ 2.0V@ I _{LDO} = 35mA 且电压变化为 ±5%	1.425	1.5	1.57	V
I_{LDO}	LDO 输出电流	稳压器输入 V _{DD} =2.0V @ V _{LDO} =1.5V		30	35	mA
C_{LDO}	外部滤波器电容值 (用于内核供电)	电容值取决于内核电源的 电流损耗	_	1	_	μF

功耗

表 10. HT32F52231/52241 功耗特性

TA=25°C,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
		V_{DD} =3.3V,HSE=8MHz, PLL=40MHz, f_{HCLK} =40MHz, f_{PCLK} =48MHz,所有外设使能	_	_	_	mA
	工作电流	V _{DD} =3.3V,HSE=8MHz, PLL=40MHz,f _{HCLK} =40MHz, f _{PCLK} =40MHz,所有外设除能	_	_	_	mA
	(运行模式)	V _{DD} = 3.3V,HSE off,PLL off, LSI on, f _{HCLK} =32kHz,f _{PCLK} =32kHz, 所有外设使能	_	_	_	μΑ
		V _{DD} =3.3V,HSE off,PLL off, LSI on, f _{HCLK} =32kHz,f _{PCLK} =32kHz, 所有外设除能	_	_	_	μΑ
I_{DD}	工作电流	V_{DD} = 3.3V,HSE=8MHz, PLL=40MHz, f_{HCLK} =0MHz, f_{PCLK} =40MHz,所有外设使能	_	_	_	mA
	(休眠模式)	V _{DD} = 3.3V,HSE=8MHz, PLL=40MHz,f _{HCLK} =0MHz, f _{PCLK} =40MHz,所有外设除能	_	_	_	mA
	工作电流(深度 休眠1模式)	V _{DD} = 3.3V,所有时钟关闭 (HSE/PLL/f _{HCLK}), LDO 在低功耗模式,LSI on,RTC on	_	_	_	μΑ
	工作电流(深度休眠2模式)	V _{DD} = 3.3V,所有时钟关闭 (HSE/PLL/f _{HCLK}), LDO off, DMOS on,LSI on,RTC on	_	_	_	μΑ
	工作电流	V _{DD} = 3.3V, LDO off, DMOS off, LSE on, LSI on, RTC on	_	_	_	μΑ
	(暂停模式)	V _{DD} = 3.3V, LDO off, DMOS off, LSE off, LSI on, RTC off	_	_	_	μА

表 11. HT32F52331/52341 功耗特性

TA=25°C,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
		V _{DD} =3.3V, HSE=8MHz, PLL=48MHz, f _{HCLK} =48MHz, f _{PCLK} =48MHz, 所有外设使能	_	_	_	mA
	工作电流	V _{DD} =3.3V,HSE=8MHz, PLL=48MHz,f _{HCLK} =48MHz, f _{PCLK} =48MHz,所有外设除能	_	_	_	mA
	(运行模式)	V _{DD} = 3.3V,HSE off,PLL off, LSI on,f _{HCLK} =32kHz,f _{PCLK} =32kHz, 所有外设使能	_	_	_	μА
		V _{DD} =3.3V,HSE off,PLL off, LSI on, f _{HCLK} =32kHz,f _{PCLK} =32kHz, 所有外设除能	_	_	_	μА
I_{DD}	工作电流	V _{DD} = 3.3V,HSE=8MHz, PLL=48MHz,f _{HCLK} =0MHz, f _{PCLK} =48MHz,所有外设使能	_	_	_	mA
	(休眠模式)	V _{DD} = 3.3V,HSE=8MHz, PLL=48MHz,f _{HCLK} =0MHz, f _{PCLK} =48MHz,所有外设除能	_	_	_	mA
	工作电流(深度 休眠1模式)	V _{DD} = 3.3V,所有时钟关闭 (HSE/PLL/f _{HCLK}),LDO 在低功耗模式, LSI on,RTC on	_	_	_	μА
	工作电流(深度休眠2模式)	V _{DD} = 3.3V,所有时钟关闭 (HSE/PLL/f _{HCLK}), LDO off,DMOS on,LSI on,RTC on	_	_	_	μА
	工作电流	V _{DD} = 3.3V, LDO off, DMOS off, LSE on, LSI on, RTC on	_	_	_	μА
	(暂停模式)	V _{DD} = 3.3V, LDO off, DMOS off, LSE off, LSI on, RTC off	_	_	_	μА

注: 1. HSE: 外部高速振荡器; HIS: 8MHz 内部高速振荡器

2. LSE: 32.768kHz 外部低速振荡器; LSI: 32kHz 内部低速振荡器

3. RTC: 实时时钟

4. 代码: while (1) {208 NOP} 在 Flash 中执行

复位和电源监控特性

表 12. V_{DD} 电源复位特性

TA=25°C,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
V_{POR}	上电复位阈值(V _{DD} 上升电压)	$T_A = -40 ^{\circ}\text{C} \sim +85 ^{\circ}\text{C}$	1.66	1.79	1.90	V
V_{PDR}	掉电复位阈值(VDD 下降电压)	$I_A = -40^{\circ} \text{ C} \sim +85^{\circ} \text{ C}$	1.49	1.64	1.78	V
V_{PORHYST}	POR 迟滞	_	_	150	_	mV
t_{POR}	复位延迟时间	V _{DD} =3.3V	_	0.1	0.2	ms

- 注: 1. 数据仅为特性描述结果,未在生产中测试。
 - 2. 设计时可保证, 未在生产中测试。
 - 3. 若 LDO 开启,则 VDD POR 处于无效状态。当 VDD POR 处于有效状态时,LDO 将被关闭。

表 13. LVD/BOD 特性

TA=25°C,除非另有规定

符号	参数	条件	_	最小值	典型值	最大值	单位
V_{BOD}	欠压检测电压	T _A = -40 °C ~ 85°C, 工厂已调整 (V _{DD}	下降沿)	2.02	2.1	2.18	V
		T _A = -40 °C ~ 85°C (V _{DD} 下降沿)	LVDS = 000	2.17	2.25	2.33	V
	低压检测电压		LVDS = 001	2.32	2.4	2.48	V
			LVDS = 010	2.47	2.55	2.63	V
17			LVDS = 011	2.62	2.7	2.78	V
$ m V_{LVD}$			LVDS = 100	2.77	2.85	2.93	V
			LVDS = 101	2.92	3.0	3.08	V
			LVDS = 110	3.07	3.15	3.23	V
			LVDS = 111	3.22	3.3	3.38	V
$V_{\text{\tiny LVDHTST}}$	LVD 迟滞	V _{DD} =3.3V		_	100	_	mV
$t_{\rm suLVD} \\$	LVD 建立时间	V _{DD} =3.3V	_	_	_	5	μs
t_{atLVD}	LVD有效延迟时间	V _{DD} =3.3V	_		_	_	μs
I_{DDLVD}	工作电流注3	V _{DD} =3.3V			5	15	μΑ

- 注: 1. 数据仅为特性描述结果, 未在生产中测试。
 - 2. 设计时可保证, 未在生产中测试。
 - 3. 不包括 Bandgap 电流。
 - 4. LVDS 位位于 PWRCU LVDCSR 寄存器中。

外部时钟特性

表 14. 外部高速时钟 (HSE) 特性

TA=25°C,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
V_{DD}	工作电压范围	_	2.0	_	3.6	V
$f_{\rm HSE}$	外部高速振荡器频率 (HSE)	_	4	_	16	MHz
C_{LHSE}	负载电容	V_{DD} =3.3V, R_{ESR} =100 Ω @16MHz	_	_	22	pF
R_{FHSE}	XTALIN 和 XTALOUT 引脚间的内部反馈电阻	_	_	1	_	МΩ
D	等效串联电阻*	V_{DD} =3.3V, C_L =12 pF@16MHz HSEDR = 0		_	160	Ω
R _{ESR}		V_{DD} =2.4V, C_L =12 pF@16MHz HSEDR=1				
$D_{\text{\tiny HSE}}$	HSE 振荡器占空比	_	40	_	60	%
I_{DDHSE}	HSE 振荡器电流损耗	V _{DD} =3.3V@16MHz	_	TBD	_	mA
I_{PWDHSE}	HSE 振荡器暂停时电流	V _{DD} =3.3V	_	_	0.01	μА
t_{SUHSE}	HSE 振荡器启动时间	V _{DD} =3.3V	_	_	4	ms

表 15. 外部低速时钟 (LSE) 特性

TA=25°C,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
V_{DD}	工作电压范围	_	2.0	_	3.6	V
$f_{\text{CK_LSE}}$	LSE 振荡器频率	V _{BAK} =2.0V~3.6V	_	32.768	_	kHz
$R_{\rm F}$	内部反馈电阻	_	_	10	_	$M\Omega$
R_{ESR}	等效串联电阻	$V_{BAK}=3.3V$	30	_	TBD	$k\Omega$
$C_{\rm L}$	建议负载电容	$V_{BAK}=3.3V$	6	_	TBD	pF
	LSE 振荡器工作电流 (高电流模式)	$ \begin{aligned} &f_{\text{CK_LSE}} \!\!=\!\! 32.768 \text{kHz} \\ &R_{\text{ESR}} \!\!=\!\! 50 \text{ k}\Omega, C_{\text{L}} \! \geq \! 7 \text{ pF} \\ &V_{\text{BAK}} \!\!=\!\! 2.0 V \!\! \sim \!\! 2.7 V \\ &T_{\text{A}} \!\!=\! -40^{\circ} \text{C} \!\! \sim \!\! +85^{\circ} \text{C} \end{aligned} $	— 3.3		6.3	μΑ
I _{DDLSE}	LSE 振荡器工作电流 (低电流模式)	f_{CK_LSE} =32.768kHz R_{ESR} =50 k Ω , C_L <7 pF V_{BAK} =2.0V~3.6V T_A = -40°C~+85°C		1.8	3.3	μΑ
	暂停时电流	_		_	0.01	μΑ
t _{SULSE}	LSE 振荡器启动时间 (低电流模式)	$\begin{array}{l} f_{CK_LSI}\!\!=\!\!32.768kHz \\ V_{BAK}\!\!=\!\!2.0V\!\!\sim\!\!3.6V \end{array}$	500	_	_	ms

- 注: PCB 布局时建议参考以下几点以提高 HSE/LSE 时钟晶体电路的稳定性:
 - 1. 晶体振荡器应当尽可能的靠近单片机以缩短走线长度,从而减少寄生电容。
 - 2. 晶体电路部分采用铺地做保护来减少噪音干扰。
 - 3. 高频信号走线时远离晶体振荡器区域,可防止串扰。

内部时钟特性

表 16. 内部高速时钟 (HSI) 特性

TA=25°C,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
$V_{\scriptscriptstyle DD}$	工作电压范围	_	2.0	_	3.6	V
$f_{\rm HSI}$	HSI 频率	$V_{DD}=3.3V, T_{A}=25^{\circ}C$	_	8	_	MHz
	工厂调整后 HSI 振荡器 频率精度	$V_{DD}=3.3V, T_A=25^{\circ}C$	-2	_	2	%
ACC _{HSI}		V _{DD} =2.5V~3.6V T _A =-40°C~+85°C	-3	_	3	%
		V _{DD} =2.0V~3.6V T _A =-40°C~+85°C	-4	_	4	%
Duty	HSI 振荡器占空比	f _{HSI} =8MHz	35	_	65	%
ī	HSI 振荡器工作电流	f -OMIL-	_	300	500	μΑ
I_{DDHSI}	暂停时电流	f _{HSI} =8MHz	_	_	0.05	μΑ
$t_{\rm SUHSI} \\$	HSI 振荡器启动时间	f _{HSI} =8MHz	_	_	10	μs

表 17. 内部低速时钟 (LSI) 特性

TA=25°C,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
$\mathbf{f}_{\mathrm{LSI}}$	内部低速振荡器频率 (LSI)	V_{DD} =3.3V T_{A} =-40°C~+85°C	21	32	43	kHz
ACC _{LSI}	LSI 振荡器频率精度	工厂调整后 V _{DD} =3.3V, T _A =25°C	-10	_	10	%
I_{DDLSI}	LSI 振荡器工作电流	$V_{DD}=3.3V, T_{A}=25^{\circ}C$	_	0.4	0.8	μΑ
t_{SULSI}	LSI 振荡器启动时间	$V_{DD}=3.3V, T_{A}=25^{\circ}C$	_	_	100	μs

PLL 特性

表 18. PLL 特性

T_A=25°C,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
f_{PLLIN}	PLL 输入时钟频率	_	4	_	16	MHz
$f_{\text{CK_PLL}}$	PLL 输出时钟频率	_	16	_	48	MHz
t_{LOCK}	PLL 锁相时间	_	_	200	_	μs

存储器特性

表 19. Flash 存储器特性

T_A=25°C,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
N_{ENDU}	可编程/擦写次数(寿命)	T _A =-40°C~+85°C	10	_		K cycles
t_{RET}	数据保存时间	T _A =-40°C~+85°C	10	_	_	Years
t_{PROG}	字编程时间	T _A =-40°C~+85°C	20	_	_	μs
t_{ERASE}	页擦除时间	T _A =-40°C~+85°C	2	_	_	ms
t _{MERASE}	整片擦除时间	T _A =-40°C~+85°C	10	_	_	ms

I/O 端口特性

表 20. I/O 端口特性

T_A=25°C,除非另有规定

符号	参数	务	 条件	最小值	典型值	最大值	单位
т.	何由亚炔)由法	3.3V I/O 引脚	V _i =V _{ss} , 片内上拉	_	_	3	μΑ
I_{IL}	低电平输入电流	复位引脚	电阻除能。	_	_	3	μΑ
ī	高电平输入电流	3.3V I/O 引脚	V _I =V _{DD} , 片内下拉	_	—	3	μΑ
I_{IH}	同电干制八电机	复位引脚	电阻除能。	_		3	μΑ
V_{IL}	低电平输入电压	3.3V I/O 引脚		-0.5	_	$0.35V_{DD}$	V
V IL	似电丁퀘八电压	复位引脚		-0.5	_	$0.35V_{DD}$	V
V	高电平输入电压	3.3V I/O 引脚		$0.65V_{DD}$	—	V _{DD} +0.5	V
V_{IH}	同电工棚八电压	复位引脚		$0.65V_{DD}$	—	V _{DD} +0.5	V
V	施密特触发器	3.3V I/O 引脚		_	$0.12V_{DD}$	_	mV
V_{HYS}	输入电压迟滞	复位引脚		_	$0.12V_{\mathrm{DD}}$	_	mV
		3.3V I/O 4 mA 驱	5.3V I/O 4 mA 驱动 , V _{OL} =0.4V		_	_	mA
	低电平输出电流	3.3V I/O 8 mA 驱动 , V _{OL} =0.4V		8	_	_	mA
I_{OL}	(GPIO 灌电流)	3.3V I/O 12 mA 羽	区动, VoL=0.4V	12	_	_	mA
		3.3V I/O 16 mA 驲	3.3V I/O 16 mA 驱动, V _{OL} =0.4V		_	_	mA
	高电平输出电流 (GPIO 源电流)	3.3V I/O 4 mA 驱动 , V _{OH} =V _{DD} -0.4V		4	_	_	mA
T		3.3V I/O 8 mA 驱动, V _{OH} =V _{DD} -0.4V		8	_	_	mA
I_{OH}		3.3V I/O 12 mA 驱动 , V _{OH} =V _{DD} -0.4 V		12	_	_	mA
		3.3V I/O 16 mA 引 V _{OH} =V _{DD} -0.4 V	3.3V I/O 16 mA 驱动 , V _{OH} =V _{DD} -0.4 V		_	_	mA
		3.3V 4mA 驱动 I/o	O, I _{OL} =4mA	_	_	0.4	V
1 7	低电平输出电压	3.3V 8mA 驱动 I/0	O, I _{OL} =8mA	_	_	0.4	V
V_{OL}	低电干制出电压	3.3V 12mA 驱动 I	I/O, I _{OL} =12mA	_	_	0.4	V
		3.3V 16mA 驱动 I	I/O, I _{OL} =16mA	_	_	0.4	V
		3.3V 4mA 驱动 I/o	O, I _{OH} =4mA	V _{DD} -0.4	_	_	V
3.7	宣山亚松山山 田	3.3V 8mA 驱动 I/O, I _{OH} =8mA		V _{DD} -0.4	_	_	V
V_{OH}	高电平输出电压	3.3V 12mA 驱动 I/O, I _{OH} =12mA		V _{DD} -0.4		_	V
		3.3V 16mA 驱动 I/O, I _{OH} =16mA		$V_{\rm DD}$ -0.4	_	_	V
R_{PU}	内部上拉电阻	3.3V I/O		_	46	_	kΩ
R_{PD}	内部下拉电阻	3.3V I/O		_	46	_	kΩ

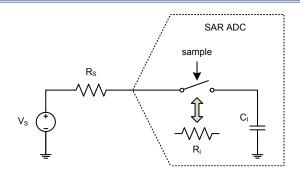

A/D 转换器特性

表 21. A/D 转换器特性

TA=25°C,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
V_{DDA}	A/D 转换器工作电压	_	2.7	3.3	3.6	V
$V_{\!\scriptscriptstyle ADCIN}$	A/D 转换器输入电压范围	_	0	_	V_{REF^+}	V
V_{REF^+}	A/D 转换器参考电压	_	_	V_{DDA}	V_{DDA}	V
I_{ADC}	电流损耗	$V_{DDA}=3.3V$	_	1	TBD	mA
I_{ADC_DN}	暂停时电流损耗	$V_{DDA}=3.3V$	_	_	0.1	μА
f_{ADC}	A/D 转换器时钟	_	0.7	_	16	MHz
f_S	采样率	_	0.05	_	1	MHz
t_{DL}	数据延迟	_	_	12.5		1/f _{ADC} Cycles
$t_{\rm S\&H}$	采样 & 保持时间	_	_	3.5	_	1/f _{ADC} Cycles
t_{ADCCONV}	A/D 转换器转换时间	_	_	16	_	1/f _{ADC} Cycles
$R_{\rm I}$	输入采样开关电阻	_		_	1	kΩ
$C_{\rm I}$	输入采样电容	不含引脚电容	_	16		pF
t_{SU}	启动时间	_	_	_	1	μs
N	A/D 转换器分辨率	_	_	12		bits
INL	积分非线性误差	$f_S = 750 \text{kHz}, V_{DDA} = 3.3 \text{V}$	_	±2	±5	LSB
DNL	微分非线性误差	$f_S = 750 \text{kHz}, V_{DDA} = 3.3 \text{V}$	_	±1	_	LSB
Eo	失调误差	_	_	_	±10	LSB
E_G	增益误差	_	_	_	±10	LSB

- 注: 1. 设计时可保证, 未在生产中测试。
 - 2. 下图为 A/D 转换器采样和保持输入阶段的等效电路,图中 C_I 为存储电容, R_I 为内部采样开关电阻, R_S 是信号源 V_S 的输出阻抗。通常情况下,采样阶段的持续时间大约是 3.5/ f_{ADC} 。在此阶段,对 C_I 充电以确保在其两端的电压变得足够接近 V_S 。为了保证这一点, R_S 取值会有一定的限制。

图 10. A/D 转换器采样网络模板

Rev. 1.30 41 of 52 2016-10-14

最差的情况是,在输入电压范围的极限值 (0V 和 V_{REF}) 进行连续采样,可采用下面公式来确保采样误差低于 1/4 LSB:

$$R_{\rm S} < \frac{3.5}{f_{\rm ADC}C_{\rm I}ln(2^{N+2})} - R_{\rm I}$$

在此公式中, f_{ADC} 是 A/D 转换器时钟频率,N 是 A/D 转换器分辨率 (此处 N=12)。安全程度由引脚 / 焊盘,寄生电容决定,在这个简单的例子中未作说明。

如果系统使用 A/D 转换器, 在连续采样阶段没有轨到轨的输入电压变化, R_s 可能大于上述公式表示值。

SCTM/GPTM/MCTM 特性

表 22. SCTM/GPTM/MCTM 特性

符号	参数	条件	最小值	典型值	最大值	单位
f_{TM}	GPTM 和 MCTM 时钟源	_	_	_	48	MHz
t_{RES}	定时器可分辨时间	_	1	_	_	f_{TM}
f_{EXT}	通道 1~4 的外部单一频率	_	_	_	1/2	f_{TM}
RES	定时器精度	_	_	_	16	bits

I2C 特性

表 23. I2C 特性

符号	女 米h	标准	模式	快速	模式	快速-	⊦ 模式	单位
付写	参数	最小值	最大值	最小值	最大值	最小值	最大值	中江
f_{SCL}	SCL 时钟频率	_	100	_	400	_	1000	kHz
$t_{SCL(H)} \\$	SCL 时钟高电平时间	4.5	_	1.125	_	0.45	_	μs
$f_{SCL(L)}$	SCL 时钟低电平时间	4.5	_	1.125	_	0.45	_	μs
t_{FALL}	SCL 和 SDA 下降沿时间	_	1.3	_	0.34	_	0.135	μs
t_{RISE}	SCL 和 SDA 上升沿时间	_	1.3	_	0.34	_	0.135	μs
$t_{\rm SU(SDA)}$	SDA 数据建立时间	500	_	125	_	50	_	ns
$t_{\rm H(SDA)}$	SDA 数据保持时间	0	_	0	_	0	_	ns
$t_{\rm SU(STA)}$	START 条件建立时间	500	_	125	_	50	_	ns
$t_{H(STA)}$	START 条件保持时间	0	_	0		0	_	ns
$t_{\rm SU(STO)}$	STOP 条件建立时间	500	_	125	—	50	_	ns

- 注: 1. 设计时可保证,未在生产中测试。
 - 2. 为达到 100kHz 标准模式,外设时钟频率必须高于 2MHz。
 - 3. 为达到 400kHz 快速模式,外设时钟频率必须高于 8MHz。
 - 4. 为达到 1MHz 快速 + 模式,外设时钟频率必须高于 20MHz。
 - 5. 以上 I²C 总线时序特性参数值是基于: SEQ_FILTER=01 且 COMB_FILTER_En 除能的情况。

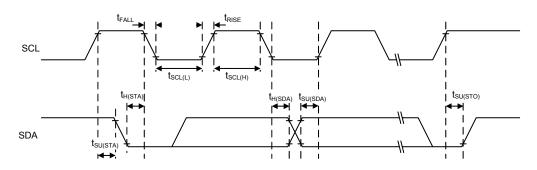


图 11. I2C 时序图

SPI 特性

表 24. SPI 特性

符号	参数	条件	最小值	典型值	最大值	单位
f_{SCK}	SCK 时钟频率	_	_	_	f _{PCLK} /2	MHz
$t_{\text{SCK(H)}}$	SCK 时钟高电平时间	_	f _{PCLK} /8	_	_	ns
$t_{SCK(L)} \\$	SCK 时钟低电平时间	_	f _{PCLK} /8	_	_	ns
SPI 主机构	大					
$t_{V(MO)}$	数据输出有效时间	_	_	_	5	ns
$t_{H(MO)}$	数据输出保持时间	_	2	_	_	ns
$t_{\rm SU(MI)}$	数据输入建立时间	_	5	_	_	ns
t _{H(MI)}	数据输入保持时间	_	5	_	_	ns
SPI 从机构	莫式					
$t_{\rm SU(SEL)}$	SEL 使能建立时间	_	4 t _{PCLK}	_	_	ns
t _{H(SEL)}	SEL 使能保持时间	_	2 t _{PCLK}	_	_	ns
$t_{A(SO)}$	数据输出访问时间	_	_	_	3 t _{PCLK}	ns
$t_{\rm DIS(SO)}$	数据输出禁止时间	_	_	_	10	ns
$t_{V(SO)}$	数据输出有效时间	_	_	_	25	ns
t _{H(SO)}	数据输出保持时间	_	15	_	_	ns
$t_{\rm SU(SI)}$	数据输入建立时间	_	5	_	_	ns
$t_{H(\mathrm{SI})}$	数据输入保持时间	_	4	_	_	ns

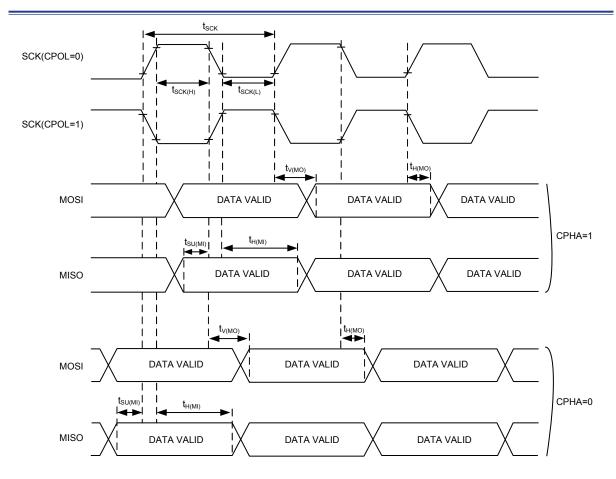


图 12. SPI 时序图 - SPI 主机模式

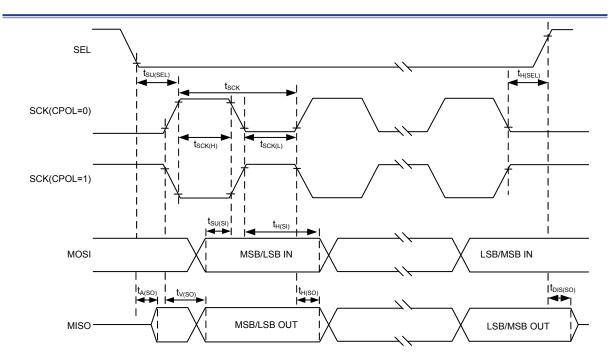


图 13. SPI 时序图 - SPI 从机模式 (CPHA=1)

USB 特性

USB接口符合 USB-IF 认证 - 全速。

表 25. USB 直流电气特性

符号	参数	条件	最小值	典型值	最大值	单位
V_{DD33}	USB 工作电压	_	3.0	_	3.6	V
$V_{\scriptscriptstyle DI}$	微分输入灵敏度	USBDP - USBDM	0.2	_	_	V
V_{CM}	共模电压范围	_	0.8	_	2.5	V
V_{SE}	单端接收器阈值	_	0.8		2.0	V
V_{OL}	Pad 输出低电压		0	_	0.3	V
V_{OH}	Pad 输出高电压	1.5kΩ 电阻 R _L 连接到 V _{DD33}	2.8	_	3.6	V
V_{CRS}	微分输出信号交叉点电压		1.3	_	2.0	V
Z_{DRV}	驱动器输出电阻	_		10	_	Ω
C _{IN}	收发器 Pad 电容	_	_	_	20	pF

- 注: 1. 设计时可保证, 未在生产中测试。
 - 2. 当电压降低至 2.7V 时,都可确保 USB 功能的正常使用,但 V_{DD} 电压范围在 2.7V~3.0V 时,部分 USB 电气特性值会有所下降。
 - 3. R_L 是连接到 USB 驱动器 USBDP 的负载电阻。

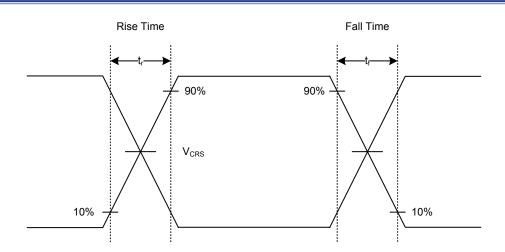


图 14. USB 信号上升时间、下降时间和交叉点电压 (V_{CRS}) 定义

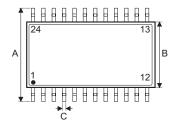
表 26. USB 交流电气特性

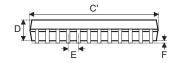
符号	参数	条件	最小值	典型值	最大值	单位
$t_{\rm r}$	上升时间	C _L =50 pF	4	_	20	ns
t_{f}	下降时间	C _L =50 pF	4	_	20	ns
$t_{\rm r/f}$	上升时间/下降时间匹配度	$t_{r/f} = t_r/t_f$	90	_	110	%

6

封装信息

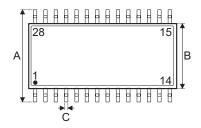
请注意,这里提供的封装信息仅作为参考。由于这个信息经常更新,提醒用户咨询 <u>Holtek 网站</u>以 获取最新版本的<u>封装信息</u>。

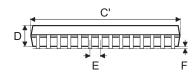

封裝信息的相关内容如下所示,点击可链接至 Holtek 网站相关信息页面。

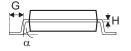

- 封装信息(包括外形尺寸、包装带和卷轴规格)
- 封装材料信息
- 纸箱信息

Rev. 1.30 47 of 52 2016-10-14

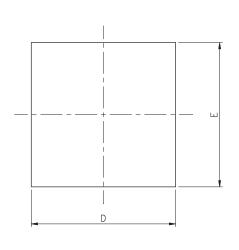
24-pin SSOP (150mil) 外形尺寸

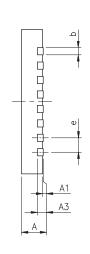


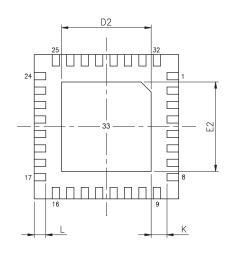

符号	尺寸(单位: inch)			
	最小值	典型值	最大值	
A	_	0.236 BSC	_	
В	_	0.154 BSC	_	
С	0.008	_	0.012	
C'	_	0.341 BSC	_	
D	_	_	0.069	
Е	_	0.025 BSC	_	
F	0.004	_	0.010	
G	0.016	_	0.050	
Н	0.004	_	0.010	
α	0°	_	8°	


<i>የ</i> ታ ロ	尺寸(单位: mm)			
符号	最小值	典型值	最大值	
A	_	6.0 BSC	_	
В	_	3.9 BSC	_	
С	0.20	_	0.30	
C'	_	8.66 BSC	_	
D	_	_	1.75	
Е	_	0.635 BSC	_	
F	0.10	_	0.25	
G	0.41	_	1.27	
Н	0.10	_	0.25	
α	0°	_	8°	

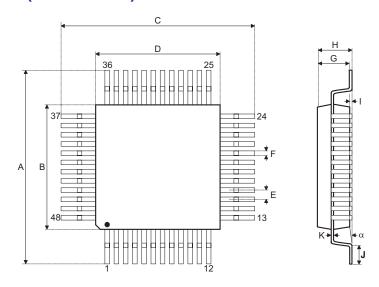
28-pin SSOP (150mil) 外形尺寸




符号		尺寸 (单位: inch)	
	最小值	典型值	最大值
A	_	0.236 BSC	_
В	_	0.154 BSC	_
С	0.008	_	0.012
C'	_	0.390 BSC	_
D	_	_	0.069
Е	_	0.025 BSC	_
F	0.004	_	0.010
G	0.016	_	0.050
Н	0.004	_	0.010
α	0°	_	8°


符号	尺寸(单位: mm)			
	最小值	典型值	最大值	
A	_	6.0 BSC	_	
В	_	3.9 BSC	_	
С	0.20	_	0.30	
C'	_	9.9 BSC	_	
D	_	_	1.75	
Е	_	0.635 BSC	_	
F	0.10	_	0.25	
G	0.41	_	1.27	
Н	0.10	_	0.25	
α	0°	_	8°	

SAW Type 33-pin (4mm×4mm) QFN 外形尺寸



符号		尺寸 (单位: inch)	
	最小值	典型值	最大值
A	0.028	0.030	0.031
A1	0.000	0.001	0.002
A3	_	0.008 BSC	_
b	0.006	0.008	0.010
D	_	0.157 BSC	_
Е	_	0.157 BSC	_
e	_	0.016 BSC	_
D2	0.104	0.106	0.108
E2	0.104	0.106	0.108
L	0.014	0.016	0.018
K	0.008	_	_

符号	尺寸 (单位: mm)			
	最小值	典型值	最大值	
A	0.70	0.75	0.80	
A1	0.00	0.02	0.05	
A3	_	0.203 BSC	_	
b	0.15	0.20	0.25	
D	_	4.00 BSC	_	
E	_	4.00 BSC	_	
e	_	0.40 BSC	_	
D2	2.65	2.70	2.75	
E2	2.65	2.70	2.75	
L	0.35	0.40	0.45	
K	0.20	_	_	

48-pin LQFP (7mm×7mm) 外形尺寸

符号	尺寸(单位: inch)			
1 ग फ	最小值	典型值	最大值	
A	_	0.354 BSC	_	
В	_	0.276 BSC	_	
С	_	0.354 BSC	_	
D	_	0.276 BSC	_	
Е	_	0.020 BSC	_	
F	0.007	0.009	0.011	
G	0.053	0.055	0.057	
Н	_	_	0.063	
I	0.002	_	0.006	
J	0.018	0.024	0.030	
K	0.004	_	0.008	
α	0°	_	7°	

符号		尺寸 (单位: mm)	
	最小值	典型值	最大值
A	_	9.0 BSC	_
В	_	7.0 BSC	_
С	_	9.0 BSC	_
D	_	7.0 BSC	_
Е	_	0.5 BSC	_
F	0.17	0.22	0.27
G	1.35	1.4	1.45
Н	_	_	1.60
Ι	0.05	_	0.15
J	0.45	0.60	0.75
K	0.09	_	0.20
α	0°	_	7°

Copyright® 2016 by HOLTEK SEMICONDUCTOR INC.

使用指南中所出现的信息在出版当时相信是正确的,然而盛群对于说明书的使用不负任何责任。文中提到的应用目的仅仅是用来做说明,盛群不保证或表示这些没有进一步修改的应用将是适当的,也不推荐它的产品使用在会由于故障或其它原因可能会对人身造成危害的地方。盛群产品不授权使用于救生、维生从机或系统中做为关键从机。盛群拥有不事先通知而修改产品的权利,对于最新的信息,请参考我们的网址 http://www.holtek.com.tw/zh/home

Rev. 1.30 52 of 52 2016-10-14